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A theory of nuclear magnetic relaxation centred around the rotation operator is proposed. The theory is 
applicable in principle to molecules of arbitrary shape, and account is taken of the effects of their inertia. 
Calculation of relaxation times associated with anisotropic chemical shift and spin-rotational in- 
teractions provides illustrations of how the theory may be employed. 
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1 I N T R O D U C T I O N  

The theory of nuclear magnetic relaxation associated with 
random thermal motion has been presented by Abragam ~ 
and Hubbard 2. In the present investigation a theory is 
proposed in which the rotation operator plays a central 
and explicit part. This is facilitated by employing results 
for the rotational Brownian motion of a rigid body of 
arbitrary shape, that were derived by calculations in 
which the effects of the inertia of the body are included 3. 

In the next section the stochastic rotation operator will 
be defined, and an outline will be given of the way in which 
the operator and its ensemble average are calculated. In 
section 3 it will be shown how relaxation times can be 
deduced from spectral densities associated with the 
rotation operator. This will be illustrated in section 4 by 
applications to relaxation by anisotropic chemical shift 
and by spin-rotational interactions. 

2 THE STOCHASTIC ROTATION OPERATOR 

The concept of rotation operator may be introduced by 
taking a set of rectangular coordinate axes Ox, Oy, Oz and 
a functionf(x,y,z) of the coordinates (x,yg) of a fixed point 
P. Let us now rotate the coordinate axes about the origin 
to Ox', Oy', Oz' and consider the same funct ionfof  the new 
coordinates (x',y'S) of P. We write 

f(x',y',z')= Rf(x,y~) (1) 

and we say that R is the rotation operator associated with 
the rotation of axes and with the func t ionf  W h e n f h a s  
more than one component, equation (1) is to be in- 
terpreted as 

f (x ' ,y ' , z ' )  = ~Rik fk (x , y , z )  (2) 
k 

It is helpful to introduce infinitesimal generators of 
rotation Jx,Jy,J= by 

Jz = -i(x~-~-Y~x ) 

If we rotate Ox,Oy,Oz through an angle Z about an axis 
specified by the unit vector e, it is easily proved 4 that 

R = e x p [ - i g ( J "  e)] (3) 

Ifa rigid body is rotating with angular velocity ~o(t) about 
e, it follows from equation (3) that 

dR(t) 
i(J. ¢o(t))R(t) (4) 

dt 

The rotation of the coordinate axes may be achieved by 
rotating about the z-axis through an angle 7', then about 
the y-axis through an angle fl' and lastly about the z-axis 
through an angle ~,5. We see from equation (3) that R is 
now given by 

R = e - i"S=e -ia'J,e - i~,,~: (5) 

If for this rotation we apply equation (2) to the set of 
spherical harmonics Y~m(0,q~), where 

x = r sinO cos~b, y = r sinO sinq~, z = r cosO 

then it is usual to write equation (2) as 

J 
~ . ( 0 , ~ ) =  T, ~ ' ' '  ' ' Dm'm(a ,f1,7 )Y~m(0,~b) (6) 

m,= - j  

where D~,m are Wigner functions. Equation (6) shows that 
D~,m is the m'm-element of the matrix representative of R 
in the representation with basis elements Yj,_ j, Yj,_ ~ ~ ~ . . . .  
Yj~; that is to say, 

• t t t j /Y~,,,(~ ,/~ ,~ ) = R,,,m (7) 

We apply these ideas to a molecule that is undergoing 
steady state Brownian motion. Then the angular velocity 
oJ(t) in equation (4) is a random variable, and so also is the 
solution of this equation. We refer to R(t) as the stochastic 
rotation operator. To obtain information about to we take 
axes fixed in the molecule with origin at the centre of mass 
and in the directions of the principal axes of inertia. We 
assume that the components of ~ referred to the 
molecular coordinate system obey the Euler-Langevin 
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equations 6 

dg°l I I ~ - ~ - -  ( 2 -  I3)r~2093 = -I~B~o91(t)+lxAt(t), etc. (8) 

where I~, 12, 13 are the principal moments of inertia, (D1, 
~02, ~03 are the components of angular velocity, IIA 1, I2A2, 
IaA 3 the components of the driving couple and I~B~og~, 
I2B#o 2, I3B3o9 ~ the components of the frictional couple 
resisting the motion. From equation (8) we may deduce 
the value of the time-correlation function of two com- 
ponents of angular velocity, which will be useful for 
subsequent calculations. 

In order to solve equation (4) we employ a method of 
solution of nonlinear differential equations that goes back 
to Krylov and Bogoliubov ~. It is assumed that the 
solution R(t) consists of a slowly varying ensemble 
average (R(t)) ,  about which there are random fluc- 
tuations, and the solution is expressed as 

R(t)= (I + eF(1)(t)+e2F(2)(t)+...)(R(t)) (9) 

where I is the identity operator and e is a small dimension- 
less parameter. R (t) describes the rotation of the molecule 
from its orientation at time zero. The ensemble average 
(R(t)) is nonstochastic and it is supposed to satisfy some 
equation 

d(.~,))~t _ (en"J(t) +~2fl~2)(t) +e3fl°)(t) +. . . ) (R( t ) )  

(10) 

By using the knowledge that we have obtained from 
equation (8) we can often deduce from equations (4), (9) 
and (10) the values ofeFtl)(t), e2F(2)(t), 8['](1)(t), 82~'~(2) (t) . . . .  
for substitution into equations (9) and (10). We may then 
be able to solve equation (10) for (R(t)>. Analytical 
solutions have in fact been found for a molecule that is 
spherical or linear or a symmetric top or even an 
asymmetric top 3. For  most n.m.r, problems the value of 
(R(t)) is all that we need. If we do need the value of R(t), 
we can obtain it from equation (9). 

BASIC THEORY OF NUCLEAR MAGNETIC 
RELAXATION 

To study nuclear magnetic relaxation we take a set of 
cartesian axes fixed with respect to the laboratory. A 
constant strong magnetic field H o acts in the z-direction. 
If Ho interacts with a nucleus spin I and gyromagnetic 
ratio ~, the field produces a Hamiltonian -7~iHoI=, 
denoted also by ~DV o, with non-degenerate energy levels. 
We now use the normalized eigenfunctions o f /~go  as a 
basis to express matrix elements of operators. A relatively 
small perturbing Hamiltonian riG(t) like that arising from 
dipole~lipole, quadrupole, chemical shift or spin- 
rotational interactions causes a relaxation process, and 
the results are usually expressed in terms of longitudinal 
and transverse relaxation times 7"1 and 7"2, 7"1 referring to 
the z-direction. For any particular interaction one has two 
problems: 

(a) to express T 1 and T 2 in terms of spectral densities 
(b) to calculate the spectral densities. 

The most direct way of handling problem (a) is to 

employ a general method due to Redfield a. If M, with 
r=x,y,z is a component of magnetic moment per unit 
volume due to the interaction and p##, denotes an element 
of the density matrix, then 

d(M.)_ ~ R..,##,p##,(Mr).,. (II) 
dt =,##, 

where 

R=,##, = J,#,,#,(~o,,- ~o#,) + J~#,,#,(~o,- 09#) 

- 6.,#,~J,,#,,.(coo - co#)- 6.#~'J..,,,#,(co.- co#,) (12) 
o" o- 

J,,,##,(co)=~ f ( G,,,(O)G~#,(t))e-'°'tdt 
- o o  

(13) 

The J,~,##,(~o) is a spectral density referred to in (a) and (b), 
G,,,(t) is an abbreviation of (c~lG(t)l~t'), where I~),1~') are 
eigenfunctions of/1go. The energy of the state I~) is/ko~. 
On substituting equations (12) and (13) into equation (11) 
we may obtain an equation 

d(M.)_ 2.(M.) (14) 
dt 

From this would follow 

1 1 
~-a =2, ~22=2x (15) 

To see how the spectral densities are to be calculated we 
shall first of all take a special form of G(t), namely, 

2 

G(t)= ~ (-)qF_~(t)A¢ (16) 
q =  - 2  

where F_2(t), F_x(t), Fo(t), Fx(t), F2(t) transform under 
rotations like the spherical harmonics 

Y2.- 2(O(t),(a(t)), Y2,- 1 (O(t),(a(t)), Y2o(O(t),r~(t)), 
Y21 (O(t),c~(t)), Y22(O(t),~(t)) 

This will permit the application of equations (6) and (7) to 
Fp(t). We have from equation (16) 

2 

G~,(t)= ~ (-)qf_~(t)(ctlA~lc() 
q =  - 2  

2 

G~#,(t)= ~ ( -  )qf*_~,(t)([3lA~,lfl')* 
q =  - 2  

2 

= ~ (-)~F*_¢(t)([3'lA~,lfl) 
q =  - 2  

where Aq + is the adjoint of the operator Aq. We deduce that 

2 

( G,,,(O)G,,,(t)>= ~ (-- )q+¢( F_q(O)F*-¢(t))(ctlaqlc() 
q ,q '  = -- 2 

x (/YlA~I/D. (17) 
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The angular brackets denote here an average over the 
random variables, that is to say, the angular velocity 
components, together with an average over the initial 
orientations of the molecule. A study of the transfor- 
mation properties of spherical harmonics shows that 9 

1 2 

(F_q(O)F*_¢(t))= qq, .' _2(R(t)).,.F. F., 

where F'v= Fv(O), a constant, and (R(t)) is the ensemble 
average of the rotation operator for the molecule in 
question. We see that we may write 

f ( F_q(O)F*q(t))e - ' ° " d t  = J(o9) 
- o o  

independent of q, and, from equations (13) and (17), that 

2 

J,,,~,~,(~o)=½J(~o) ~ (=lA.l=')(fl'lA+lfl) (18) 
q= - 2  

where 

2 

J(og)- 1 V ~ ' * w  -i'Otdt - ~  ~ - . - . ,  (R(t)).,.e 
n , n "  = - -  2 

(19) 

We know F'q from the nature of the perturbing Hamil- 
tonian that gives rise to the interaction and we know 
(R(t)) from the investigation of the rotational Brownian 
motion of the molecule. Hence we can in principle 
calculate J(~) from equation (19) and consequently the 
relaxation times from equations (11), (12), (13), (15) and 
(18). Moreover, since the integral in equation (19) is 
independent of the interaction Hamiltonian FiG(t), results 
for relaxation times can easily be taken over from one 
interaction satisfying equation (16) to another by replac- 
ing the values of F'q in equation (19). 

4 CALCULATION OF RELAXATION TIMES 

As applications of the Redfield theory we shall investigate 
two types of interaction that cause nuclear magnetic 
relaxation. The first is anisotropic chemical shift, which is 
an example of an interaction satisfying equation (16). The 
other is spin-rotational interaction, which does not obey 
equation (16). 

For anisotropic chemical shift it may be shown 
thatX°'~ 

Ao=2Holz AI = - ~ - H o I  + A-1 = ~ - H o I -  

(20) 
A 2 =A -2 =0  

where 

and that 

r 1 Fo=~6=, 

I ± = I~ +_ ilr 

F+I =0 F+2 = yfz, (21) 

Theory of n.m.r.: J. McConnell 

where the non-vanishing elements of the diagonalized 
anisotropic chemical shift tensor are 

-~(1-06=,, -~(1 -t-06=,, 6=, 

Hence, from equation (18), 

1 

J=~=,r(~o=.- o9¢,) = ½J.(~o=,- co~,) ~ (c~lAqlfl)(fl'lA~ I=') 
q =  - 1  

and Jcs(~o) is given by equation (19) with the values of F'q 
taken from equation (21). Since 

( M,) =~l iN(I , )  

where N is the number per unit volume of nuclei taking 
part in the relaxation process, we may obtain the re- 
laxation times by applying equations (11), (14) and (15) to 
I,. Employing equation (20) we find after an elementary 
calculation that 10 

1 
- - =  3H2oJ~,(mo) 

1 1 2 = ~Ho[4J¢,(0 ) + 3Jc,(COo)] 

(22) 

To complete the calculations we must obtain an 
expression for Jcs(~o) from equations (19) and (21). What 
was equivalently the same thing was done by Abragam 
but only for a spherical molecule and with inertial effects 
neglected ~2. The explicit use of the rotation operator has 
allowed us to include the inertial effects and to extend the 
discussion to a linear molecule and to a symmetric top 
moleculC °. We shall put down the result only for the 
latter case taking the nucleus to be at the centre and the 
axis of symmetry as the third coordinate axis in equation 
(8), so that 12=11, B2=BI: 

/ 601 \ 
-3Dr/1 + ~ 7 - /  

, / 
J,(°9)=s~ ~'z'~. 36DZ+coz 

(D1 +2D3)(1 2D1 4D 3 

}, +½(2 (2D1 +4D3) 2 \  + co 2 + . . .  

where 

kT kT 
D1 - I1B1 D 3 -  IaB3 (23) 

The relaxation times follow from equation (22). 
We can see from equations (16), (18) and (19) that, when 

the interacting Hamiltonian can be expanded as a linear 
combination of elements of a five-dimensional spherical 
tensor, we require only (R(t)) for the molecule in order to 
calculate the spectral density J(~o) and consequently the 
relaxation times. This procedure fails in the study of 
nuclear magnetic relaxation by spin-rotational interac- 
tions. Then 

/~G =/~(I. C. J) (24) 

where I is the spin operator of the nucleus that interests us, 
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C is the three-dimensional spin-rotational tensor and/~J is 
the angular momentum operator of the molecule that 
contains the nucleus. Since the number of independent 
elements of C is not five, the G of equation (24) cannot be 
expanded as in equation (16). 

A general theory of nuclear magnetic relaxation by 
spin-rotational interactions has been based on the sto- 
chastic rotation operator ~ 3. The angular momentum/~J is 
replaced by its classical value (Iffo l,/2o92,13(o3). We have 
found that the Redfield method yields relaxation times 
T~', Tl' given by 

1 1 
- -  = 2J , , (O)o )  = J , , ( 0 )  + J , , ( m o )  (25 )  

T1' 

where 

J,,(o)) = ½{c(ico) + c( -  Re)} 

1 3 1 
c(s) = ~ E Z (-)"b.ub,,f l f l ,  

. ) / I  /~,v= Ira,n= 1 

(26) 

x ( f  e -" (  R(t)o)z(t)og~(O))dt).,_ m 

o 

_ C1 ~ T- iC2~ 
bo~= C3~ b±l.~ = + 

(27) 

and n , - m  denotes matrix representation with respect to 
the basis YI,-I,YIo,Yll. 

We can see from equations (25), (26) and (27) that a 
knowledge of (R(t))  is no longer adequate for the 
calculation of spectral densities and relaxation times. We 
must now use our knowledge of the values of 
eF(1)(t),e2Ft2)(t) .... and of (R(t))  to calculate R(t) from 
equation (9). Then we must obtain (R(t)cou(t)og,(O)), 
calculate its Laplace transform and the matrix elements of 
this, evaluate c(s) from equation (27) and employ equa- 
tions (25) and (26) to deduce the relaxation times. This has 
been done in principle for an asymmetric molecule and 
with the inclusion of inertial effects. Explicit results can be 
given for molecules that are linear, axially symmetric or 
spherical. 

For simplicity we shall report these results only in the 
extreme narrowing approximation of co 0 < kT/(IB), where 
I and B stand generically for the moments of inertia and 
the friction constants in equation (8). Then T~ ~' and 
T~' are equal, and we shall denote their common 
value by T~,. In the case of a spherical molecule ~3 

1 2IkT 2 2 
= .  { (c ,  + 2 c . ) -  - c , )  2 

ls, an o 

-.I- ~ K 2  (Ca_ -- Cii )2-{-...} (28) 

where x = k T/ (IB 2), the spin-rotational tensor component 
C, refers to the direction of the radius through the nucleus 
and C± refers to a perpendicular direction. In the case of a 
molecule which has a principal axis of inertia through the 
centre of mass that passes through the nucleus and which 
is such that this principal axis is an axis of symmetry (7, for 
the molecule with n ~>3 ~4 

1 2kTf .  2I, C 2 I3C~ [(B~ 2I '  
= + o,  + 03 B3 + 201 + k r I B B3 

213 "X 2 2Is(C~+2C,CII)I" ~ 
I ,B2~-_I_B3))C,  4 ~ + B - T j a ) J J  (29) 

In this equation C11,I3,B3 refer to the axis of symmetry, 
CI,I1,B1 refer to a perpendicular axis and D1,D 3 are 
defined in equations (23). In the case of a linear molecule 15 

1 4kTIC 2 (30) 
T~, 3h2B 

Calculations have been performed for the above mole- 
cular models, when inertial effects are ignored ~6. It has 
been found that equation (28) is altered to 

1 2IkT(C~+2C 2) 
T~, 3f/2B 

that equation (29) is altered to 

1 2kTf2I,Cl I3C ) 

and that equation (30) is unaltered. The inclusion of 
inertial effects produces for the sphere and for the 
symmetric rotator corrections of order x, which is at most 
a few per cent. There is zero correction for the linear 
molecule, even though the calculations have been perfor- 
med to an accuracy of x 2. 

5 CONCLUSION 

An analytical theory of nuclear magnetic relaxation has 
been based on the stochastic rotation operator and on the 
Redfield method of establishing a differential equation for 
the ensemble average of the magnetic moment produced 
by a specified interaction mechanism. The theory has been 
applied to examples of two different classes of interaction, 
namely, anisotropic chemical shift and spin-rotational. 
The present theory is confined to the study of the 
behaviour of a single molecule. 
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